Store-independent modulation of Ca2+ entry through Orai by Septin 7
نویسندگان
چکیده
Orai channels are required for store-operated Ca(2+) entry (SOCE) in multiple cell types. Septins are a class of GTP-binding proteins that function as diffusion barriers in cells. Here we show that Septin 7 acts as a 'molecular brake' on activation of Orai channels in Drosophila neurons. Lowering Septin 7 levels results in dOrai-mediated Ca(2+) entry and higher cytosolic Ca(2+) in resting neurons. This Ca(2+) entry is independent of depletion of endoplasmic reticulum Ca(2+) stores and Ca(2+) release through the inositol-1,4,5-trisphosphate receptor. Importantly, store-independent Ca(2+) entry through Orai compensates for reduced SOCE in the Drosophila flight circuit. Moreover, overexpression of Septin 7 reduces both SOCE and flight duration, supporting its role as a negative regulator of Orai channel function in vivo. Septin 7 levels in neurons can, therefore, alter neural circuit function by modulating Orai function and Ca(2+) homeostasis.
منابع مشابه
Biochemical and functional characterization of Orai proteins.
Stimulation of immune cells triggers Ca2+ entry through store-operated Ca2+ release-activated Ca2+ channels, promoting nuclear translocation of the transcription factor NFAT. Through genome-wide RNA interference screens in Drosophila, we and others identified olf186-F (Drosophila Orai, dOrai) and dStim as critical components of store-operated Ca2+ entry and showed that dOrai and its human homol...
متن کاملMutant IP3 receptors attenuate store-operated Ca2+ entry by destabilizing STIM–Orai interactions in Drosophila neurons
Store-operated Ca2+ entry (SOCE) occurs when loss of Ca2+ from the endoplasmic reticulum (ER) stimulates the Ca2+ sensor, STIM, to cluster and activate the plasma membrane Ca2+ channel Orai (encoded by Olf186-F in flies). Inositol 1,4,5-trisphosphate receptors (IP3Rs, which are encoded by a single gene in flies) are assumed to regulate SOCE solely by mediating ER Ca2+ release. We show that in D...
متن کاملSTIM and Orai in cellular proliferation and division.
Cellular proliferation and division are central processes in the development, survival and evolution of living systems. Transitioning into the cell division phase of the cell cycle encompasses dramatic remodeling of cellular organelles and signaling modules including Ca2+ signaling. As well, Ca2+ signals play important roles during progression through various stages of the cell cycle. A ubiquit...
متن کاملOrai channel-mediated Ca2+ signals in vascular and airway smooth muscle.
Orai (Orai1, Orai2, and Orai3) proteins form a family of highly Ca(2+)-selective plasma membrane channels that are regulated by stromal-interacting molecules (STIM1 and STIM2); STIM proteins are Ca(2+) sensors located in the membrane of the endoplasmic reticulum. STIM and Orai proteins are expressed in vascular and airway smooth muscle and constitute the molecular components of the ubiquitous s...
متن کاملA role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry.
TRPC and Orai proteins have both been proposed to form Ca(2+)-selective, store-operated calcium entry (SOCE) channels that are activated by store-depletion with Ca(2+) chelators or calcium pump inhibitors. In contrast, only TRPC proteins have been proposed to form nonselective receptor-operated calcium entry (ROCE) cation channels that are activated by Gq/Gi-PLCbeta signaling, which is the phys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016